Rapeseed Meal as A Sustainable Plant Protein Source for Poultry in Pakistan

Authors

  • Rohban Hameed Department of Animal Nutrition, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan.
  • Fath Ullah Department of Animal Nutrition, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan.
  • Muhammad Tahir Department of Animal Nutrition, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan.
  • Hammadullah Livestock and Dairy Development Department (Research Wing), Khyber Pakhtunkhwa, Pakistan.
  • Rahat Shah Livestock and Dairy Development Department (Extension Wing), Khyber Pakhtunkhwa, Pakistan.
  • Saba Kousar
  • Aamir Khan Livestock and Dairy Development Department (Extension), Khyber Pakhtunkhwa, Pakistan.
  • Muhammad Imran Khan College of Veterinary Sciences, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan
  • Abdullah Iqbal District Diagnostic Laboratory, Livestock and Dairy Development Department, Government of Punjab, Mandi Bahauddin, Pakistan.
  • Javed Iqbal Institute of Poultry Science, University of Agriculture Sub-Campus Toba Tek Singh, Pakistan
  • Muhammad Idrees Khan Livestock and Dairy Development Department (Extension Wing), Khyber Pakhtunkhwa, Pakistan.

Keywords:

Anti-Nutritional Factors, Enzyme Supplementation, Feed Efficiency, Sustainable Protein Source, Poultry Feed

Abstract

The increase in the consumption of animal foods across the global population provokes worry about the resource's sustainability and the impacts on the environment before supporting plant proteins. This literature survey focuses on rapeseed meal consumption as a poultry feed substitute in Pakistan and its viability. Likewise, various methods of deactivation of anti-nutritional factors in rapeseed meals through physical, chemical, enzymatic, and plant breeding techniques are also discussed in a separate section. Therefore, the processing procedures such as acid and alkaline treatments, and extraction using solvents are described due to their efficiency in eliminating toxicants and enhancing the nutritional value of the rapeseed meal. For that reason, enzyme complexes exhibited significant functions in enhancing energy realization and nutrient assimilation within low-energy diets, which makes them significant for poultry feeds. The study makes it very important to appreciate the functional properties of canola proteins like gelation properties and solubility for several uses in the food industry. The digestibility experiment highlights how enzymes are used to enhance the level of nutrient breakdowns and absorption in poultry feeds. The review focuses on the multifaceted role of rapeseed meals as not only the source of proteins but also as a positive factor in feed production and feed recycling. To this end, the potential use of rapeseed meal in various aspects of poultry production for the kinder means of agricultural practices, environmentally friendly practices, and cost-effective practices within the poultry sector in Pakistan was determined.

References

. Chmielewska, A., Kozłowska, M., Rachwał, D., Wnukowski, P., Amarowicz, R., Nebesny, E., & Rosicka-Kaczmarek, J. (2021). Canola/rapeseed protein–nutritional value, functionality and food application: a review. Critical Reviews in Food Science and Nutrition, 61(22), 3836-3856.

. OECD-FAO. (2017). Agricultural Outlook 2017-2026. Accessed October 25, 2019. http://www.fao.org/3/a-i7465e.pdf.

. Aiking, H. (2011). Future protein supply. Trends in Food Science & Technology, 22(2-3), 112-120.

. Smil, V. (2014). Eating meat: Constants and changes. Global food security, 3(2), 67-71.

. Marsh, K. A., Munn, E. A., & Baines, S. K. (2013). Protein and vegetarian diets. Med J Aust, 199(4 Suppl), S7-S10.

. Campbell, L., Rempel, C. B., & Wanasundara, J. P. (2016a). Canola/Rapeseed Protein: Future Opportunities and Directions-Workshop Proceedings of IRC 2015. Plants (Basel, Switzerland), 5(2), 17.

. Campbell, L., Rempel, C. B., & Wanasundara, J. P. (2016b). Canola/rapeseed protein: Future opportunities and directions—Workshop proceedings of IRC 2015. In: MDPI.

. Patrick, C., & André, P. (2014). Rapeseed market, worldwide and in Europe.

. Negawoldes, T. (2018). Review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. J Nutr Health Food Eng, 8(1), 43-48.

. Rymer, C., & Short, F. (2003). The nutritive value for livestock of UK oilseed rape and rapeseed meal.

. Carré, P., & Pouzet, A. (2014). Rapeseed market, worldwide and in Europe. Ocl, 21(1), D102.

. Mupondwa, E., Li, X., & Wanasundara, J. P. (2018). Technoeconomic prospects for commercialization of Brassica (cruciferous) plant proteins. Journal of the American Oil Chemists' Society, 95(8), 903-922.

. Rodrigues, I. M., Coelho, J. F., & Carvalho, M. G. V. (2012). Isolation and valorisation of vegetable proteins from oilseed plants: Methods, limitations and potential. Journal of Food Engineering, 109(3), 337-346.

. Von Der Haar, D., Müller, K., Bader-Mittermaier, S., & Eisner, P. (2014). Rapeseed proteins–Production methods and possible application ranges. Ocl, 21(1), D104.

. Lim, T. K. (2012). Edible medicinal and non-medicinal plants (Vol. 1). Springer.

. CCC. (2015). Canola meal feeding guide. Accessed October 25, 2019. https://www.canolacouncil.org/media/516716/2015_canola_meal_feed_industry_guide.pdf.

. Wanasundara, J. P., McIntosh, T. C., Perera, S. P., Withana-Gamage, T. S., & Mitra, P. (2016). Canola/rapeseed protein-functionality and nutrition. Ocl, 23(4), D407.

. PPA. (2023). An Overview of Pakistan Poultry Industry (2022-2023). Accessed May 27, 2024. https://pakistanpoultrycentral.pk/poultry-status/#:~:text=Poultry%20Industry%20generates%20employment%20and,people%20of%20Pakistan%20directly%20%26%20indirectly.&text=Presently%20turnover%20of%20Pakistan%20Poultry,for%20about%205%20million%20people.

. Iji, P. A., Toghyani, M., Ahiwe, E. U., Omede, A. A., & Applegate, T. (2017). Alternative sources of protein for poultry nutrition. Burleigh Dodds Science Publishing.

. Van der Poel, A., Van Krimpen, M., Veldkamp, T., & Kwakkel, R. (2013). Unconventional protein sources for poultry feeding–opportunities and threats. Proceedings of the 19th European Symposium on Poultry Nutrition, Potsdam, Germany, 26-29 August 2013,

. Crawshaw, R. (2003). Co-product feeds: Animal feeds from the food and drinks industries R Crawshaw Nottingham University Press, Nottingham, 2001 pp 285, price£ 30.00 (paperback) ISBN 1-897676-35-2. Journal of the Science of Food and Agriculture, 83(4), 362-362.

. Świątkiewicz, S., & Koreleski, J. (2008). The use of distillers dried grains with solubles (DDGS) in poultry nutrition. World's Poultry Science Journal, 64(2), 257-266.

. Kerr, B., Dozier III, W., & Shurson, G. (2013). Effects of reduced-oil corn distillers dried grains with solubles composition on digestible and metabolizable energy value and prediction in growing pigs. Journal of Animal Science, 91(7), 3231-3243.

. Meloche, K., Kerr, B., Shurson, G., & Dozier III, W. (2013). Apparent metabolizable energy and prediction equations for reduced-oil corn distillers dried grains with solubles in broiler chicks from 10 to 18 days of age. Poultry science, 92(12), 3176-3183.

. Blair, R. (2017). Nutrition and feeding of organic pigs. Cabi.

. Bampidis, V., & Christodoulou, V. (2011). Chickpeas (Cicer arietinum L.) in animal nutrition: A review. Animal Feed Science and Technology, 168(1-2), 1-20.

. Helsper, J., Balkema-Boomstra, A., Ribôt, S., Groot, M., & Van Loo, E. (2006). Novel protein crops as pig feed in organic farming (1566-7790).

. Vander Pol, M., Hristov, A., Zaman, S., & Delano, N. (2008). Peas can replace soybean meal and corn grain in dairy cow diets. Journal of Dairy Science, 91(2), 698-703.

. Schumacher, H., Paulsen, H., Gau, A., Link, W., Jürgens, H., Sass, O., & Dieterich, R. (2011). Seed protein amino acid composition of important local grain legumes Lupinus angustifolius L., Lupinus luteus L., Pisum sativum L. and Vicia faba L. Plant breeding, 130(2), 156-164.

. Stegeman, D., Janssen, A., Helsper, J., Van der Meer, I., & Van Kernebeek, H. (2010). Technologie en grondstoffen voor vleesvervangers en hoogwaardige eiwitten.

. Gutierrez, O., Zhang, C., Cartwright, A., Carey, J., & Bailey, C. (2007). Use of guar by-products in high-production laying hen diets. Poultry science, 86(6), 1115-1120.

. Hassan, S., Haq, A., Byrd, J., Berhow, M., Cartwright, A., & Bailey, C. (2010). Haemolytic and antimicrobial activities of saponin-rich extracts from guar meal. Food Chemistry, 119(2), 600-605.

. Lee, J., Connor-Appleton, S., Bailey, C., & Cartwright, A. (2005). Effects of guar meal by-product with and without beta-mannanase Hemicell on broiler performance. Poultry science, 84(8), 1261-1267.

. Lee, J. T., Connor-Appleton, S., Haq, A. U., Bailey, C. A., & Cartwright, A. L. (2004). Quantitative measurement of negligible trypsin inhibitor activity and nutrient analysis of guar meal fractions. Journal of Agricultural and Food Chemistry, 52(21), 6492-6495.

. Henry, M., Pesti, G., Bakalli, R., Lee, J., Toledo, R., Eitenmiller, R., & Phillips, R. (2001). The performance of broiler chicks fed diets containing extruded cottonseed meal supplemented with lysine. Poultry science, 80(6), 762-768.

. Swetman, A., Nicolaides, L., Wareing, P., New, J., Wood, J., & Hammond, L. (2002). Food processing and preservation. Crop Post‐Harvest: Science and Technology: Principles and Practice, 1, 360-422.

. Kempton, T. (2006). Value-added coconut co-products. ACIAR PROCEEDINGS,

. Sundu, B., Kumar, A., & Dingle, J. (2006). Palm kernel meal in broiler diets: effect on chicken performance and health. World's Poultry Science Journal, 62(2), 316-325.

. Bryden, W., Li, X., Ravindran, G., Hew, L., & Ravindran, V. (2009). Ileal digestible amino acid values in feedstuffs for poultry.

. Oatway, L., Vasanthan, T., & Helm, J. H. (2001). Phytic acid. Food Reviews International, 17(4), 419-431.

. Chen, Y., Duan, W., Wang, L., Zhang, S., & Zhou, Y. (2013). Effects of thermostable phytase supplementation on the growth performance and nutrient digestibility of broilers. International Journal of Poultry Science, 12(8), 441.

. Ravindran, V., Selle, P., Ravindran, G., Morel, P., Kies, A., & Bryden, W. (2001). Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a lysine-deficient diet. Poultry science, 80(3), 338-344.

. Davis, A., Lordelo, M., & Dale, N. (2002). The use of cottonseed meal with or without added soapstock in laying hen diets. Journal of Applied Poultry Research, 11(2), 127-133.

. Sterling, K., Costa, E., Henry, M., Pesti, G., & Bakalli, R. (2002). Responses of broiler chickens to cottonseed-and soybean meal-based diets at several protein levels. Poultry science, 81(2), 217-226.

. Smithard, R. (2002). Secondary plant metabolites in poultry nutrition.

. Janardhanan, V. V., K. (2000). Nutritional and anti-nutritional composition of velvet bean: an under-utilized food legume in South India. International Journal of Food Sciences and Nutrition, 51(4), 279-287.

. Pugalenthi, M., Vadivel, V., & Siddhuraju, P. (2005). Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis—a review. Plant foods for human nutrition, 60, 201-218.

. Vijayakumari, K., Smitha, K., & Janardhanan, K. (2002). Biochemical characterization of the tribal pulse, Mucuna utilis Wall ex. Wight. seeds.

. Li, Y., Cheng, Y., Zhang, Z., Wang, Y., Mintah, B. K., Dabbour, M., Jiang, H., He, R., & Ma, H. (2020). Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrasonics Sonochemistry, 69, 105240.

. Wanasundara, J. P., Kapel, R., & Albe-Slabi, S. (2024). Proteins from Canola/Rapeseed—Current Status. In Sustainable protein sources (pp. 285-309). Elsevier.

. Jiang, L., Phillips, T. E., Hamm, C. A., Drozdowicz, Y. M., Rea, P. A., Maeshima, M., Rogers, S. W., & Rogers, J. C. (2001). The protein storage vacuole: a unique compound organelle. The Journal of cell biology, 155(6), 991-1002.

. Wanasundara, J. P. (2011). Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Critical Reviews in Food Science and Nutrition, 51(7), 635-677.

. Tripathi, M., Mishra, A., Misra, A., & Prasad, R. (2003). Effect of graded levels of high glucosinolate mustard (brassica júncea) meal inclusion on nutrient utilization, growth performance, organ weight, and carcass composition of growing rabbits. World rabbit science, 11(4), 211-226.

. Ciurescu, G. (2009b). Efficiency of soybean meal replacement by rapeseed meal and/or canola seeds in commercial layer diets. Archiva Zootechnica, 12(1), 27-33.

. Ashnie, E., Urge, M., & Asres, A. (2015). Effects of different levels of solvent extracted rapeseed (Brassica carinata) meal replacement to soybean meal on the performance of broiler chicks. Food Sci. Qual. Manag, 36, 78-87.

. Taraz, Z., Jalali, S., & Rafeie, F. (2006). Effects of replacement of soybean meal with rapeseed meal on organs weight, some blood biochemical parameters and performance of broiler chicks. Int. J. Poult. Sci, 5, 1110-1115.

. AARI. (2024). Rapeseed & Mustard. Accessed May 27, 2024. https://aari.punjab.gov.pk/rapeseed_oilseed

. Ciurescu, G. (2009a). Efficiency of soybean meal replacement by rapeseed meal and/or canola seeds in commercial layer diets.

. Sehwag, S., & Das, M. (2015). A brief overview: Present status on utilization of mustard oil and cake.

. Feng, D., & Zuo, J. (2007). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. International Consultative Group for Research on Rapeseed, Wuhan, China, 265-270.

. Bell, J. (1984). Nutrients and toxicants in rapeseed meal: a review. Journal of Animal Science, 58(4), 996-1010.

. Blair, R., Misir, R., Bell, J., & Clandinin, D. (1986). The chemical composition and nutritional value for chickens of meal from recent cultivars of canola. Canadian journal of animal science, 66(3), 821-825.

. Clandinin, D., & Robblee, A. (1983). Canola meal can be good source of high-quality protein for poultry: Canadian researchers.

. Clandinin, D. (1990). Canola meal for livestock and poultry. Canola Council of Canada.

. Zeb, A. (1998). Possibilities and limitations of feeding rapeseed meal to broiler chicks. Verlag nicht ermittelbar.

. Durrani, F., & Khalil, I. (1990). Chemical composition of Brassica oil seed meal. Pakistan Journal of Scientific and Industrial Research (Pakistan), 33(1).

. Fernandez, S., Zhang, Y., & Parsons, C. (1993). Determination of protein solubility in oilseed meals using coomassie blue dye binding. Poultry science, 72(10), 1925-1930.

. Finlayson, A. (1974). The amino acid composition of rapeseed hulls. 495-496.

. Grala, W., Pastuszewska, B., Smulikowska, S., Buraczewska, L., & Gdala, J. (1994). Effect of thermal processing on the protein value of double-low rapeseed products. 2. Effect of processing stages in the oil plant and of toasting in laboratory conditions. J. Anim. Feed Sci, 3(1), 43-55.

. Henkel, H., & Mosenthin, R. (1989). Rapssaat und Rapsprodukte in der Tierernährung. Übers. Tierernährg, 17, 139-190.

. Jensen, S. K., Liu, Y.-G., & Eggum, B. (1995). The effect of heat treatment on glucosinolates and nutritional value of rapeseed meal in rats. Animal Feed Science and Technology, 53(1), 17-28.

. Keith, M., & Bell, J. (1984). Effects of ammoniation of canola (low glucosinolate rapeseed) meal on its nutritional value for the rat. Canadian journal of animal science, 64(4), 997-1004.

. Khorasani, G., Robinson, P., & Kennelly, J. (1989). Effect of chemical treatment on in vitro and in situ degradation of canola meal crude protein. Journal of Dairy Science, 72(8), 2074-2080.

. Kohnhorst, A., Uebersax, M., & Zabik, M. (1990). Production and functional characteristics of protein concentrates. Journal of the American Oil Chemists’ Society, 67, 285-292.

. Lin, S., & Lakin, A. L. (1990). Thermal denaturation of soy proteins as related to their dye-binding characteristics and functionality. Journal of the American Oil Chemists’ Society, 67, 872-878.

. Rogulski, W. (1989b). Nutritive value of non-protein nitrogen from post-extraction rapeseed meal

. Rogulski, W. (1989a). Non-protein nitrogen from post-extraction rapeseed meal.

. Sandmann, M., & Schon, W. (1988). proteins in rapeseed, composition and characterization. 7th International Rapeseed Congress/convened under the patronage of Stanislaw Zieba; by the Plant Breeding and Acclimatization Institute under the auspices of the Group Consultatif International de Recherche sur le Colza,

. Fenwick, G. R., & Curtis, R. F. (1980). Rapeseed meal in rations for laying hens: a review of the effect on egg quality. Journal of the Science of Food and Agriculture, 31(6), 515-525.

. Leslie, A. J., & Summers, J. (1975). Amino acid balance of rapeseed meal. Poultry science, 54(2), 532-538.

. Näsi, M., & Siljander-Rasi, H. (1991). Effects of thermal processing on digestibility and protein utilization of rapeseed meal of medium and low glucosinolate type in diets for growing pigs. Agricultural and Food Science, 63(5), 475-482

. Barbour, G., & Sim, J. (1991). True metabolizable energy and true amino acid availability in canola and flax products for poultry. Poultry science, 70(10), 2154-2160.

. Muztar, A. J., & Slinger, S. (1980). Apparent amino acid availability and apparent metabolizable energy values of Tower and Candle rapeseeds and rapeseed meals. Poultry science, 59(7), 1430-1433.

. Muztar, A. J., Slinger, S., Likuski, H., & Dorrell, H. (1980). True amino acid availability values for soybean meal and tower and candle rapeseed and rapeseed meals determined in two laboratories. Poultry science, 59(3), 605-610.

. Nwokolo, E., Bragg, D., & Kitts, W. (1976). The availability of amino acids from palm kernel, soybean, cottonseed and rapeseed meal for the growing chick. Poultry science, 55(6), 2300-2304.

. Shahidi, F., Naczk, M., Hall, D., & Synowiecki, J. (1992). Insensitivity of the amino acids of canola and rapeseed to methanol-ammonia extraction and commercial processing. Food Chemistry, 44(4), 283-285.

. Summers, J., & Leeson, S. (1978). Feeding value and amino acid balance of low-glucosinolate Brassica napus (Cv. Tower) rapeseed meal. Poultry science, 57(1), 235-241.

. Summers, J., & Leeson, S. (1986). Amino acid supplementation of canola and soybean meal.

. Summers, J., Bedford, M., & Spratt, D. (1990). Interaction of calcium and sulphur in canola and soybean meal diets fed to broiler chicks. Canadian journal of animal science, 70(2), 685-694.

. Summers, J., Spratt, D., & Bedford, M. (1990). Factors influencing the response of broiler chickens to calcium supplementation of canola meal. Poultry science, 69(4), 615-622.

. Summers, J., Bedford, M., & Spratt, D. (1992). Sulphur and calcium supplementation of soybean and canola meal diets. Canadian journal of animal science, 72(1), 127-133.

. Zuprizal, Z., Larbier, M., Chagneau, A., & Lessire, M. (1991). Effect of protein intake on true digestibility of amino acids in rapeseed meals for adult roosters force fed with moistened feed.

. Hertrampf, J. W., & Piedad-Pascual, F. (2012). Handbook on ingredients for aquaculture feeds. Springer Science & Business Media.

. Walk, C., & Bedford, M. (2020). Application of exogenous enzymes: is digestibility an appropriate response variable? Animal production science, 60(8), 993-998.

. Ramesh, K., & Devegowda, G. (2004). Effect of feeding varying levels of double zero rapeseed meal with and without enzyme supplementation on performance of broilers. Proceeding of 22nd World’s Poultry Congress,

. Khan, S., Sardar, R., & Siddique, B. (2006). Influence of enzymes on performance of broilers fed sunflower-corn based diets.

. Alagawany, M., Farag, M. R., Abd El-Hack, M. E., & Dhama, K. (2015). The practical application of sunflower meal in poultry nutrition. Adv. Anim. Vet. Sci, 3(12), 634-648.

. Mushtaq, T., Sarwar, M., Ahmad, G., Mirza, M., Ahmad, T., Athar, M., Mushtaq, M., & Noreen, U. (2009). Influence of pre‐press solvent‐extracted cottonseed meal supplemented with exogenous enzyme and digestible lysine on performance, digestibility, carcass and immunity responses of broiler chickens. Journal of Animal Physiology and Animal Nutrition, 93(2), 253-262.

. Hosseini, S. M., & Afshar, M. (2017). Effects of feed form and xylanase supplementation on performance and ileal nutrients digestibility of heat-stressed broilers fed wheat–soybean diet. Journal of Applied Animal Research, 45(1), 550-556.

. Rutherfurd, S., Chung, T., & Moughan, P. (2007). The effect of a commercial enzyme preparation on apparent metabolizable energy, the true ileal amino acid digestibility, and endogenous ileal lysine losses in broiler chickens. Poultry science, 86(4), 665-672.

. Sherif, K. E. (2009). Performance of broiler chicks fed plant protein diets supplemented with commercial enzymes. Journal of Animal and Poultry Production, 34(4), 2819-2834.

. Zhou, Y., Jiang, Z., Lv, D., & Wang, T. (2009). Improved energy-utilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poultry science, 88(2), 316-322.

. Kidd, M., Morgan, G., Price, C., Welch, P., & Fontana, E. (2001). Enzyme supplementation to corn and soybean meal diets for broilers. Journal of Applied Poultry Research, 10(1), 65-70.

. Tang, D., Hao, S., Liu, G., Nian, F., & Ru, Y. (2014). Effects of maize source and complex enzymes on performance and nutrient utilization of broilers. Asian-Australasian journal of animal sciences, 27(12), 1755.

. Sun, H. Y., Ingale, S. L., Rathi, P., & Kim, I. H. (2018). Influence of β-glucanase supplementation on growth performance, nutrient digestibility, blood parameters, and meat quality in broilers fed wheat–barley–soybean diet. Canadian journal of animal science, 99(2), 384-391.

. Moftakharzadeh, S. A., Janmohammadi, H., Taghizadeh, A., Kianfar, R., & Olyayee, M. G. (2019). Effect of enzyme addition on energy utilization and performance of broiler chickens fed wheat-based diet with different metabolizable energy levels. Acta Scientiarum. Animal Sciences, 41, e44585.

. Elangovan, A. V., Mandal, A. B., Tyagi, P. K., Tyagi, P. K., Toppo, S., & Johri, T. S. (2004). Effects of enzymes in diets with varying energy levels on growth and egg production performance of Japanese quail. Journal of the Science of Food and Agriculture, 84(15), 2028-2034.

. Scheideler, S., Beck, M., Abudabos, A., & Wyatt, C. (2005). Multiple-enzyme (Avizyme) supplementation of corn-soy-based layer diets. Journal of Applied Poultry Research, 14(1), 77-86.

. Shalash, S., El-Wafa, S., Hassan, R., Ramadan, N. A., Mohamed, M. S., & El-Gabry, H. E. (2010). Evaluation of distillers dried grains with solubles as feed ingredient in laying hen diets. Int. J. Poult. Sci, 9(6), 537-545.

. Amer, S. A., Beheiry, R. R., Abdel Fattah, D. M., Roushdy, E. M., Hassan, F. A., Ismail, T. A., Zaitoun, N. M., Abo-Elmaaty, A. M., & Metwally, A. E. (2021). Effects of different feeding regimens with protease supplementation on growth, amino acid digestibility, economic efficiency, blood biochemical parameters, and intestinal histology in broiler chickens. BMC Veterinary Research, 17, 1-16.

. Cowieson, A., Abdollahi, M., Zaefarian, F., Pappenberger, G., & Ravindran, V. (2018). The effect of a mono-component exogenous protease and graded concentrations of ascorbic acid on the performance, nutrient digestibility and intestinal architecture of broiler chickens. Animal Feed Science and Technology, 235, 128-137.

. Stefanello, C., Vieira, S., Rios, H., Simões, C., & Sorbara, J. (2016). Energy and nutrient utilisation of broilers fed soybean meal from two different Brazilian production areas with an exogenous protease. Animal Feed Science and Technology, 221, 267-273.

. Walk, C., Pirgozliev, V., Juntunen, K., Paloheimo, M., & Ledoux, D. (2018). Evaluation of novel protease enzymes on growth performance and apparent ileal digestibility of amino acids in poultry: enzyme screening. Poultry science, 97(6), 2123-2138.

. Attia, G. A., Metwally, A. E., Beheiry, R. R., & Farahat, M. H. (2021). Effect of a multicarbohydrase supplementation to diets varying in metabolisable energy level on the performance, carcase traits, caecal microbiota, intestinal morphology, and nutrient digestibility in broiler chickens. Italian Journal of Animal Science, 20(1), 215-225.

. Giacobbo, F. C., Eyng, C., Nunes, R. V., de Souza, C., Teixeira, L. V., Pilla, R., Suchodolski, J. S., & Bortoluzzi, C. (2021). Influence of enzyme supplementation in the diets of broiler chickens formulated with different corn hybrids dried at various temperatures. Animals, 11(3), 643.

. Kim, M., Ingale, S. L., Hosseindoust, A., Choi, Y., Kim, K., & Chae, B. (2021). Synergistic effect of exogenous multi-enzyme and phytase on growth performance, nutrients digestibility, blood metabolites, intestinal microflora and morphology in broilers fed corn-wheat-soybean meal diets. Animal bioscience, 34(8), 1365.

. González-Vega, J., Walk, C., & Stein, H. (2015). Effect of phytate, microbial phytase, fiber, and soybean oil on calculated values for apparent and standardized total tract digestibility of calcium and apparent total tract digestibility of phosphorus in fish meal fed to growing pigs. Journal of Animal Science, 93(10), 4808-4818.

. Lagos, L., & Stein, H. (2018). 336 Effect of Drying Method of Ileal Digesta on the Digestibility of Crude Protein and Amino Acids By Pigs. Journal of Animal Science, 96(suppl_2), 181-181.

. Lee, S. A., Lagos, L. V., Walk, C. L., & Stein, H. H. (2019). Basal endogenous loss, standardized total tract digestibility of calcium in calcium carbonate, and retention of calcium in gestating sows change during gestation, but microbial phytase reduces basal endogenous loss of calcium. Journal of Animal Science, 97(4), 1712-1721.

. Czarnecka, J., & Koziołkiewicz, M. (2007). Albuminy 2S-roślinne białka zapasowe o właściwościach alergennych. biotechnologia, 2(77), 114-127.

. Lee, P. W., Hefle, S., & Taylor, S. (2008). Sandwich enzyme‐linked immunosorbent assay (ELISA) for detection of mustard in foods. Journal of food science, 73(4), T62-T68.

. Monsalve, R., Villalba, M., & Rodríguez, R. (2001). Allergy to mustard seeds: the importance of 2S albumins as food allergens. Internet Symposium on Food Allergens,

. Frigerio, J., Pellesi, R., Mezzasalma, V., De Mattia, F., Galimberti, A., Lambertini, F., Suman, M., Zanardi, S., Leporati, A., & Labra, M. (2019). Development of a DNA barcoding-like approach to detect mustard allergens in wheat flours. Genes, 10(3), 234.

. Moreno, F. J., & Clemente, A. (2008). 2S albumin storage proteins: what makes them food allergens? The open biochemistry journal, 2, 16.

. Poikonen, S., Puumalainen, T. J., Kautiainen, H., Palosuo, T., Reunala, T., & Turjanmaa, K. (2008). Sensitization to turnip rape and oilseed rape in children with atopic dermatitis: a case‐control study. Pediatric Allergy and Immunology, 19(5), 408-411.

. Puumalainen, T., Puustinen, A., Poikonen, S., Turjanmaa, K., Palosuo, T., & Vaali, K. (2015). Proteomic identification of allergenic seed proteins, napin and cruciferin, from cold-pressed rapeseed oils. Food Chemistry, 175, 381-385.

. L’Hocine, L., Pitre, M., & Achouri, A. (2019). Detection and identification of allergens from Canadian mustard varieties of Sinapis alba and Brassica juncea. Biomolecules, 9(9), 489.

. EC. (2014). 2014/424/EU: Commission Implementing Decision of 1 July 2014 authorising the placing on the market of rapeseed protein as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council (notified under document C(2014) 4256). Official Journal of the European Union. Accessed May 28, 2024. https://op.europa.eu/en/publication-detail/-/publication/9664e97c-0281-11e4-831f-01aa75ed71a1/language-en

. Fiocchi, A., Dahdah, L., Riccardi, C., Mazzina, O., & Fierro, V. (2016). Preacutionary labelling of cross-reactive foods: The case of rapeseed. Asthma research and practice, 2, 1-8.

. Foegeding, E. A., & Davis, J. P. (2011). Food protein functionality: A comprehensive approach. Food Hydrocolloids, 25(8), 1853-1864.

. Funaro, A., Wu, X., Song, M., Zheng, J., Guo, S., Rakariyatham, K., Rodriguez‐Estrada, M. T., & Xiao, H. (2016). Enhanced anti‐inflammatory activities by the combination of Luteolin and Tangeretin. Journal of food science, 81(5), H1320-H1327.

. Nadathur, S., Wanasundara, J., & Scanlin, L. (2017). Proteins in the diet: Challenges in feeding the global population. In Sustainable protein sources (pp. 1-19). Elsevier.

. Ostrowska, A., Kozlowska, M., Rachwal, D., Wnukowski, P., Nebesny, E., & Rosicka-Kaczmarek, J. (2018). Rapeseed protein-fibre concentrate: Chemical composition and functional properties. Żywność Nauka Technologia Jakość, 25(4).

. Wanasundara, J. P., Abeysekara, S. J., McIntosh, T. C., & Falk, K. C. (2012). Solubility differences of major storage proteins of Brassicaceae oilseeds. Journal of the American Oil Chemists' Society, 89, 869-881.

. Cheung, L., Wanasundara, J., & Nickerson, M. T. (2014). The effect of pH and NaCl levels on the physicochemical and emulsifying properties of a cruciferin protein isolate. Food Biophysics, 9, 105-113.

. Cheung, L., Wanasundara, J., & Nickerson, M. T. (2015). Effect of pH and NaCl on the emulsifying properties of a napin protein isolate. Food Biophysics, 10, 30-38.

. Karaca, A. C., Low, N., & Nickerson, M. (2011). Emulsifying properties of canola and flaxseed protein isolates produced by isoelectric precipitation and salt extraction. Food Research International, 44(9), 2991-2998.

. Sibt-e-Abbas, M., Butt, M. S., Khan, M. R., Sultan, M. T., Saddique, M. S., & Shahid, M. (2020). Nutritional and functional characterization of defatted oilseed protein isolates. Pakistan Journal of Agricultural Sciences, 57(1), 219-228.

. Kalaydzhiev, H., Georgiev, R., Ivanova, P., Stoyanova, M., Silva, C. L., & Chalova, V. I. (2020). Enhanced solubility of rapeseed meal protein isolates prepared by sequential isoelectric precipitation. Foods, 9(6), 703.

. Tan, S. H., Mailer, R. J., Blanchard, C. L., & Agboola, S. O. (2014). Emulsifying properties of proteins extracted from Australian canola meal. LWT-Food Science and Technology, 57(1), 376-382.

. Malabat, C., nchez‐Vioque, R. I., Rabiller, C., & Gu guen, J. (2001). Emulsifying and foaming properties of native and chemically modified peptides from the 2S and 12S proteins of rapeseed (Brassica napus L.). Journal of the American Oil Chemists' Society, 78(3), 235-242.

. Gerzhova, A., Mondor, M., Benali, M., & Aider, M. (2015). Study of the functional properties of canola protein concentrates and isolates extracted by electro-activated solutions as non-invasive extraction method. Food Bioscience, 12, 128-138.

. Yang, C., Wang, Y., Vasanthan, T., & Chen, L. (2014). Impacts of pH and heating temperature on formation mechanisms and properties of thermally induced canola protein gels. Food Hydrocolloids, 40, 225-236.

. Kim, J. H. J., Varankovich, N. V., & Nickerson, M. T. (2016). The effect of pH on the gelling behaviour of canola and soy protein isolates. Food Research International, 81, 31-38.

. Rangel, A., Saraiva, K., Schwengber, P. c., Narciso, M. S., Domont, G. B., Ferreira, S. T., & Pedrosa, C. (2004). Biological evaluation of a protein isolate from cowpea (Vigna unguiculata) seeds. Food Chemistry, 87(4), 491-499.

. Lordelo, M., Davis, A., Wilson, J., & Dale, N. (2004). Cottonseed meal diets improve body weight uniformity in broiler breeder pullets. Journal of Applied Poultry Research, 13(2), 191-199.

. Costa, E., Miller, B., Pesti, G., Bakalli, R., & Ewing, H. (2001). Studies on feeding peanut meal as a protein source for broiler chickens. Poultry science, 80(3), 306-313.

. Senkoylu, N., & Dale, N. (2006). Nutritional evaluation of a high-oil sunflower meal in broiler starter diets. Journal of Applied Poultry Research, 15(1), 40-47.

. Gonzalez-Esquerra, R., & Leeson, S. (2000). Effects of menhaden oil and flaxseed in broiler diets on sensory quality and lipid composition of poultry meat. British Poultry Science, 41(4), 481-488.

. Bean, L., & Leeson, S. (2003). Long-term effects of feeding flaxseed on performance and egg fatty acid composition of brown and white hens. Poultry science, 82(3), 388-394.

. Evans, A., Smith, D., & Moritz, J. (2015). Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. Journal of Applied Poultry Research, 24(2), 206-214.

. Kim, C., & Kang, H. (2015). Effect of dietary supplementation with a chlorella by-product on the performance, immune response and metabolic function in laying hens. European Poultry Science/Archiv für Geflügelkunde, 79(108).

. Khattab, R., & Arntfield, S. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT-Food Science and Technology, 42(6), 1113-1118.

. Soetan, K., & Oyewole, O. (2009). The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: A review. African Journal of food science, 3(9), 223-232.

. Frias, J., Vidal-Valverde, C., Sotomayor, C., Diaz-Pollan, C., & Urbano, G. (2000). Influence of processing on available carbohydrate content and antinutritional factors of chickpeas. European Food Research and Technology, 210, 340-345.

. Petterson, D. (2000). The use of lupins in feeding systems-review. Asian-Australasian journal of animal sciences, 13(6), 861-882

. Akande, K., Doma, U., Agu, H., & Adamu, H. (2010). Major Antinutrients Found in Plant Protein Sources: Their Effect on Nutrition. Pakistan Journal of Nutrition, 9(8), 827-832.

. Alonso, R., Aguirre, A., & Marzo, F. (2000). Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chemistry, 68(2), 159-165.

. Mariscal-Landın, G., Lebreton, Y., & Sève, B. (2002). Apparent and standardised true ileal digestibility of protein and amino acids from faba bean, lupin and pea, provided as whole seeds, dehulled or extruded in pig diets. Animal Feed Science and Technology, 97(3-4), 183-198.

. Jiménez‐Martínez, C., Hernández‐Sánchez, H., Alvarez‐Manilla, G., Robledo‐Quintos, N., Martínez‐Herrera, J., & Dávila‐Ortiz, G. (2001). Effect of aqueous and alkaline thermal treatments on chemical composition and oligosaccharide, alkaloid and tannin contents of Lupinus campestris seeds. Journal of the Science of Food and Agriculture, 81(4), 421-428.

. Ibrahim, S., Habiba, R., Shatta, A., & Embaby, H. (2002). Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas. Food/nahrung, 46(2), 92-95.

. Kayembe, N. C. (2011). Germination as a processing technique for soybeans in small-scale broiler farming. University of Pretoria (South Africa).

. Elkin, R. (2002a). Nutritional components of feedstuffs: a qualitative chemical appraisal of protein.

. Elkin, R. (2002b). Nutritional components of feedstuffs: a qualitative chemical appraisal of protein. 57-86.

. Selle, P. H., Ravindran, V., Bryden, W. L., & Scott, T. (2006). Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry: a review. The journal of poultry science, 43(2), 89-103.

. Klaus, M., Stephanie, B.-M., & Peter, E. (2014). Rapeseed proteins–Production methods and possible application ranges.

. Jeroch, H., & Kozlowski, K. (2013). Improving the nutritive value of poultry feedstuffs: the rapeseed products example.

. Bellostas, N., Sørensen, H., & Sørensen, S. (2007). Quality of rapeseed meal for animal nutrition and as a source of value-added products–glucosinolates, protein and fibres. Bulletin, 24.

Downloads

Published

2025-05-14

Issue

Section

Review Paper
Loading...